
www.manaraa.com

J. Appl. Math. Comput. (2016) 50:199–225
DOI 10.1007/s12190-015-0866-x

ORIGINAL RESEARCH

An iterative technique for solving singularly perturbed
parabolic PDE

M. P. Rajan · G. D. Reddy

Received: 1 December 2014 / Published online: 18 January 2015
© Korean Society for Computational and Applied Mathematics 2015

Abstract In this paper, we examine the applicability of a variant of iterative Tikhonov
regularization for solving parabolic PDE with its highest order space derivative mul-
tiplied by a small parameter ε. The solution of the operator equation ∂u

∂t − ε ∂2u
∂x2

+
a(x, t) = f (x, t) is not uniformly convergent to the solution of the operator equa-
tion ∂u

∂t + a(x, t) = f (x, t), when ε → 0. Although many numerical techniques are
employed in practice to tackle the problem, the discretization of the PDE often leads
to ill-conditioned system and hence the perturbed parabolic operator equation become
ill-posed. Since we are dealing with unbounded operators, first we discuss the general
theory for unbounded operators for iterated regularization scheme and propose an a
posteriori parameter choice rule for choosing a regularization parameter in the iter-
ative scheme. We then apply these techniques in the context of perturbed parabolic
problems. Finally, we implement our iterative scheme and compare with other basic
existing schemes to assert the adaptability of the scheme as an alternate approach for
solving the problem.

Keywords Singular Perturbations · Parabolic PDE · Regularization

Mathematical Subject Classification 65M60 · 65M15 · 65M12

M. P. Rajan (B) · G. D. Reddy
School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram,
CET Campus, Thiruvananthapuram 695 016, Kerala, India
e-mail: rajanmp@iisertvm.ac.in

G. D. Reddy
e-mail: damu@iisertvm.ac.in

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-015-0866-x&domain=pdf


www.manaraa.com

200 M. P. Rajan, G. D. Reddy

1 Introduction

Many phenomena in science and engineering, for instance in chemical reactions, are
models of reaction-diffusion singularly perturbed problems, for which the diffusion
coefficient can be very small with respect to the reaction coefficient. We consider the
following singularly perturbed 1D parabolic reaction-diffusion problem:

∂u

∂t
− ε

∂2u

∂x2
+ a(x, t)u = f (x, t), � := (0, 1) × (0, 1), (1.1)

u(x, 0) = 0, u(0, t) = u(1, t) = 0, t, x ∈ [0, 1], (1.2)

where 0 < ε << 1 and the reaction term satisfies 0 < β ≤ a(x, t) for all (x, t) ∈ �̄

and data f are sufficiently smooth functions on �̄. It is well known that the solution
of (1.1) and (1.2), exhibit a boundary layer at x = 0 and x = 1 [8,13,16]. The sin-
gularly perturbed time-dependent problems have been an interesting subject for many
researchers andmany numericalmethodswere proposed in literature to solve parabolic
problems [1–3,8–13,16,18,19]. Although various numerical schemes are available in
literature to find the approximate solution of such problems, the discretization of the
PDE often leads to a highly ill-conditioned system and that results in an unstable
solution. In addition to this, the presence of boundary layers phenomena prompt us
to seek more stable and robust numerical methods that give a stable solution for any
value of the diffusion parameter. Instead of using uniform meshes for discreteizing
the problem, researchers exploited non-uniform meshes such as Shishkin Scheme and
other hybrid schemes for solving the problem. In this paper, our idea is to propose
iterated regularization technique as an alternate method to solve this problem. Regu-
larization techniques have been studied in literature [4,6,7,14,15] to solve ill-posed
operator equations and Tikhonov regularization is one such schemes. Our intention is
to consider iterated Tikhonov regularization as an alternate tool for solving this prob-
lem and Tikhonov regularization is a special case of such a scheme. Iterated Tikhonov
regularization for bounded operators have been discussed in detail in literature [4]
and the reference therein. However, we are dealing with unbounded operators for sin-
gularly perturbed problems. Hence, a special treatment is mandatory to address this
problem as regularization theory for unbounded operators had received only very little
attention in literature except for a few like [7] and reference therein.

To analyze the problem rigorously, we rewrite (1.1) in an operator form as follows

Lu = f ; (1.3)

where L = ∂
∂t −ε ∂2

∂x2
+a(x, t) is a closed unbounded operator acting between suitable

Hilbert spaces. The operator equation (1.3) is ill-posed in the sense that, as ε → 0,
the solution u is not uniformly convergent to the solution of the reduced problem
[(when ε = 0 in (1.1)]. In order to motivate the discussion, we will first discuss how
iterated Tikhonov regularization can be applied to unbounded operators and then we
will analyse the problem in the context of singularly perturbed problems. In order
to achieve this goal, let us assume that X is a Hilbert space and L : X → X be a
closed densely defined unbounded linear operator on X satisfying (1.3). The above
equation is ill-posed if N (L) �= 0 or R(L) is not closed. Incase only noisy data f̃ with
‖ f − f̃ ‖ < δ, δ > 0 is available instead of f , we consider the operator equation as
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Lu = f̃ . (1.4)

The adjoint of the operator L is defined by, L∗ = − ∂
∂t − ε ∂2

∂x2
+ a(x, t).

The paper is structured as follows. In Sect. 2, we discuss the general theory for
unbounded operators using iterated Tikhonov regularization and in Sect. 3 an a poste-
riori choice strategy for choosing the regularization parameter is presented. In Sect. 4,
we discuss convergence and error estimate analysis for singularly perturbed parabolic
problem. Finally, in Sect. 5, we illustrate the efficiency of the approach through numer-
ical examples.

2 Analysis of unbounded operators

In this section, we discuss the general theory of unbounded operators with respect to
iterated Tikhonov regularization. Such a discussion is warrant due to the following
reasons: (i) Most of the literature on regularization theory is applied to bounded oper-
ators; (ii) We need a different treatment to the problem when we deal with data that
may not be sufficiently smooth to get a stable solution. Hence, instead of getting a
solution using iterated Tikhonov regularizion, as in the case of bounded operators, in
the form

unα :=
n∑

j=1

α j−1(L∗L + α I )− j L∗ f (2.1)

for (1.1), we adopt a different approach to get the solution. For unbounded operators,
it is not necessary that the data f belong to D(L∗) or that the definition L∗ f make
any sense at all. This sought us to compute the solution through a different approach
and to make an alternate analysis for unbounded operators by considering:

unα :=
n∑

j=1

α j−1L∗(LL∗ + α I )− j f. (2.2)

When we deal with the noisy data f̃ , we consider the solution

ũnα :=
n∑

j=1

α j−1L∗(LL∗ + α I )− j f̃ . (2.3)

Theorem 2.1 If L is a closed densely defined operator and unα is defined as in (2.2).
Then L∗L(unα − u) → 0 as α → 0 and ‖unα‖ ≤ ‖u‖.
Proof Note that we have Lu = f and unα := ∑n

j=1 α j−1L∗(LL∗ + α I )− j f . There-
fore, it follow that

L∗L
(
unα − u

) = L∗L

⎛

⎝
n∑

j=1

α j−1L∗ (
LL∗ + α I

)− j
f − u

⎞

⎠

= L∗
⎛

⎝
n∑

j=1

α j−1LL∗ (
LL∗ + α I

)− j
f − Lu

⎞

⎠
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= L∗
⎛

⎝
n∑

j=1

α j−1LL∗ (
LL∗ + α I

)− j
f − f

⎞

⎠

= L∗
⎛

⎝
n∑

j=1

(
α j−1 (

LL∗ + α I
)−( j−1)

f − α j (LL∗ + α I
)− j

f
)

− f

⎞

⎠

= L∗ ((
I − αn (

LL∗ + α I
)−n

)
f − f

)

= −αn L∗ (
LL∗ + α I

)−n
f.

This implies that ‖L∗L(unα − u)‖ = αn‖L∗(LL∗ + α I )−n f ‖ and hence L∗L(unα −
u) → 0 as α → 0. As above we can rewrite unα as unα = (I −αn(L∗L +α I )−n)u and
since ‖I −αn(L∗L +α I )−n‖ ≤ 1, we have ‖unα‖ ≤ ‖u‖. This completes the proof. �	
Theorem 2.2 Let unα be defined as in (2.2) and Lu = f. Then unα converges to u as
α → 0.

Proof For any w ∈ X and ‖unα‖ ≤ ‖u‖, we can see that

|〈u, unα − u〉| ≤ |〈L∗Lw, unα − u〉| + |〈u − L∗Lw, unα − u〉|
≤ |〈w, L∗L(unα − u)〉| + |〈u − L∗Lw, unα〉| + |〈u − L∗Lw, u〉|
≤ ‖w‖‖L∗L(unα − u)‖ + ‖u − L∗Lw‖‖unα‖ + ‖u − L∗Lw‖‖u‖
≤ ‖w‖‖L∗L(unα − u)‖ + 2‖u − L∗Lw‖‖u‖.

Using Theorem 2.1 and the fact that R(L∗L) = N (L)⊥, we see that 〈u, unα − u〉 → 0
as α → 0 and hence 〈u, unα〉 → ‖u‖2 as α → 0. Again by using Theorem 2.1, we
obtain that

‖uα − u‖2 = ‖uα‖2 − 2〈uα, u〉 + ‖u‖2
≤ 2‖u‖2 − 2〈uα, u〉 → 0, as α → 0.

Therefore, ‖unα − u‖ → 0 as α → 0. �	
Theorem 2.3 (A priori Method ) Let unα and ũnα be defined according to (2.2) and
(2.3) respectively. If f̃ is such that ‖ f − f̃ ‖ ≤ δ, then ‖ũnα − u‖ ≤ q(α) + c δ√

α
,

where q(α) = ‖αn(L∗L + α I )−nu‖. Furthermore, if the regularization parameter
α is chosen with condition that α(δ) → 0 and δ√

α(δ)
→ 0, then ‖ũnα − u‖ → 0 as

δ → 0. If u ∈ R((L∗L)ν), 0 < ν ≤ n, then

‖ũnα − u‖ ≤ αν + c
δ√
α

and by choosing α ∼ δ2/(2ν+1)

‖ũnα − u‖ = O(δ2ν/(2ν+1)).
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Proof First note that, ũnα − u = unα − u + ũnα − unα which implies

‖ũnα − u‖ ≤ ‖unα − u‖ + ‖ũn − unα‖

=
∥∥∥∥∥∥

n∑

j=1

α j−1L∗(LL∗ + α I )− j f − u

∥∥∥∥∥∥

+
∥∥∥∥∥∥

n∑

j=1

α j−1L∗(LL∗ + α I )− j f −
n∑

j=1

α j−1L∗(LL∗ + α I )− j f̃

∥∥∥∥∥∥

=
∥∥∥∥∥∥

n∑

j=1

α j−1L∗(LL∗ + α I )− j Lu − u

∥∥∥∥∥∥

+
∥∥∥∥∥∥

n∑

j=1

α j−1L∗(LL∗ + α I )− j ( f − f̃ )

∥∥∥∥∥∥

≤
∥∥∥∥∥∥
αn(L∗L + α I )−nu

∥∥∥∥∥∥
+

∥∥∥∥∥∥

n∑

j=1

α j−1L∗(LL∗ + α I )− j

∥∥∥∥∥∥

∥∥∥∥∥∥
f − f̃

∥∥∥∥∥∥

≤ q(α) + c
δ√
α

. (2.4)

In Theorem 2.2, we have seen that q(α) → 0 as α → 0. For δ > 0, choose α = α(δ)

such thatα(δ) → 0 and δ√
α(δ)

→ 0. Therefore, if δ → 0 implies thatq(α)+c δ√
α

→ 0.

Using spectral theory result, one can easily prove that q(α) ≤ αν and hence the
result. �	

3 An a posteriori parameter choice rule

In this section, we investigate an a posteriori parameter choice rule to get an optimal
rate of convergence for the solution of ill-posed unbounded operator equation. The
parameter choice rule for boundedoperators is discussed in detail in [4,5] and reference
therein. The parameter α is chosen in such a way that it depends on both data and
noise level δ and, we consider the following discrepancy principle for choosing the
regularization parameter.

g(α, f̃ ) := 2α2n+1〈(LL∗ + α I )−(2n+1) f̃ , f̃ 〉 = γ 2δ2, (3.1)

where 0 < γ 2δ2 ≤ 2‖ f̃ ‖2. (3.2)

First we claim that there exists a unique α satisfying the discrepancy principle.

Theorem 3.1 Assume that γ >
√
2, f̃ �= 0 and 0 < γδ ≤ 2‖ f̃ ‖. Then there exists

a unique α satisfies g(α, f̃ ) = γ 2δ2. Furthermore, g(α, f̃ ) is continuously differen-
tiable and strictly increasing and its derivative is g′(α, f̃ ) = 2(2n+1)α2n‖L∗(LL∗+
α I )−(n+1) f̃ ‖2.
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Proof Due to spectral representation theorem, we obtain that

g(α, f̃ ) = 2α2n+1〈(LL∗ + α I )−(2n+1) f̃ , f̃ 〉
= 2

∫ ∞

0

(
α

λ + α

)2n+1

d〈Fλ f̃ , Fλ f̃ 〉.

Using the Dominated convergence theorem and the fact α
λ+α

< 1, we deduce the
below relations

lim
α→∞ g(α, f̃ ) = lim

α→∞ 2
∫ ∞

0

(
α

λ + α

)2n+1

d〈Fλ f̃ , Fλ f̃ 〉

= 2
∫ ∞

0
lim

α→∞

(
α

λ + α

)2n+1

d〈Fλ f̃ , Fλ f̃ 〉
= 2‖ f̃ ‖2.

As above, we have

lim
α→0

g(α, f̃ ) = 2
∫ ∞

0
lim
α→0

(
α

λ + α

)2n+1

d〈Fλ f̃ , Fλ f̃ 〉
= 2‖PN (LL∗) f̃ ‖2,

where {Fλ} and PN (LL∗) are spectral family of an operator LL∗, an orthogonal pro-
jection on N (LL∗) respectively. If f ∈ R(L) satisfying ‖ f − f̃ ‖ ≤ δ, then

‖PN (LL∗) f̃ ‖ ≤ ‖PN (LL∗) f ‖ + ‖P(NLL∗)( f − f̃ )‖ ≤ δ

and accordingly limα→0 g(α, f̃ ) ≤ 2δ2. Therefore,

lim
α→0

α2n+1
∫ ∞

0

(
1

λ + α(δ)

)2n+1

d〈Fλ f̃ , f̃ 〉 = lim
α→0

g(α, f̃ ) = 0

as δ → 0. We can conclude from above that limδ→0 α(δ) = 0. It can be seen that
g(α, f̃ ) is continuously differentiable and the derivative of g(α, f̃ ),

g′(α, f̃ ) = 2(2n + 1)α2n‖L∗(LL∗ + α I )−(n+1) f̃ ‖2

and hence g(α, f̃ ) is strictly increasing. Now since 0 < γδ ≤ 2‖ f̃ ‖, by intermediate
value theorem, there exists a unique α such that g(α(δ), f̃ ) = γ 2δ2. �	

Next we discuss the parameter choice rule with the exact data.

Theorem 3.2 Suppose that γ >
√
2, γ1 = γ −√

2, γ2 = γ +√
2 and α̂ is computed

through (3.1), then there exist a constant γ ∈ [γ1, γ2] such that g(α̂, f ) = γ 2δ2.
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Proof From (3.1), we have

g1/2(α, f ) = √
2α(2n+1)/2

∥∥∥(LL∗ + α I )−(2n+1)/2 f
∥∥∥

= √
2α(2n+1)/2

∥∥∥(LL∗ + α I )−(2n+1)/2 f̃

+ (LL∗ + α I )−(2n+1)/2( f − f̃ )
∥∥∥

�
√
2α(2n+1)/2

∥∥∥(LL∗ + α I )−(2n+1)/2 f̃
∥∥∥

±√
2α(2n+1)/2

∥∥∥(LL∗ + α I )−(2n+1)/2( f − f̃ )
∥∥∥ .

Since ‖ f − f̃ ‖ ≤ δ, we have that (γ − √
2)2δ2 ≤ g(α, f ) ≤ (γ + √

2)2δ2. Thus,
there exist a constant γ ∈ [γ1, γ2] satisfying g(α̂, f ) = γ 2δ2. �	

Theorem 3.3 Let γ ∈ [γ1, γ2] with γ >
√
2, γ1 = γ − √

2 and γ2 = γ + √
2, then

p(α) = q(α)2 + γ 2 δ2

α
attains minimum if and only if g(α, f ) = γ 2δ2.

Proof Proof follows from properties of p′(α) and Theorem 3.2. �	
Now we see that α obtained from (3.1) gives the minimum error.

Theorem 3.4 Suppose γ ∈ [γ1, γ2] with γ >
√
2, γ1 = γ − √

2, γ2 = γ + √
2 and

α̂ is computed through (3.1), then

‖ũn
α̂

− u‖ ≤ c0 inf
α>0

{
q(α) + c

δ√
α

}
(3.3)

where c20 = 2max{(c/γ1)2, (γ2/c)2}.
Proof Using (2.4), Theorem 3.3 and α̂ obtained from (3.1), we see that ‖ũn

α̂
− u‖ ≤

q(α̂) + c δ√
α̂
. Squaring both sides yields,

‖ũn
α̂

− u‖2 ≤ 2

(
q(α̂)2 + c2

δ2

α̂

)

≤ 2max{(c/γ )2, 1}
(
q(α̂)2 + γ 2 δ2

α̂

)

≤ 2max{(c/γ )2, 1} inf
α>0

{
q(α)2 + γ 2 δ2

α

}

≤ 2max{(c/γ )2, 1}max{(γ /c)2, 1} inf
α>0

{
q(α)2 + c2

δ2

α

}

≤ 2max{(c/γ1)2, (γ2/c)2} inf
α>0

{
q(α)2 + c2

δ2

α

}
.
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Thus, ‖ũn
α̂

− u‖ ≤ c0 infα>0
{
q(α) + c δ√

α

}
with c20 = 2max{(c/γ1)2, (γ2/c)2}. �	

Theorem 3.5 Assume that u ∈ R((L∗L)ν) with 0 < ν ≤ n. Then

1. There exists a unique α such that α(2n+1)/2‖(L∗L + α I )−n(L∗L)νw‖ = cδ.

2. ‖ũn
α̂

− u‖ = O
(
δ

2ν
(2ν+1)

)
.

Proof By Theorem 3.4, we can see that

‖ũn
α̂

− u‖ ≤ c0 inf
α>0

{
αn‖(L∗L + α I )−nu‖ + c

δ√
α

}
.

If u ∈ R((L∗L)ν), then

‖ũn
α̂

− u‖ ≤ c0 inf
α>0

{
αn‖(L∗L + α I )−n(L∗L)νw‖ + c

δ√
α

}
.

Consider g1(α) = α(2n+1)/2‖(L∗L+α I )−n(L∗L)νw‖. In the similar fashion (as in the
proof of the Theorem 3.1), we obtain that limα→0 g1(α) = 0, limα→∞ g1(α) = ∞,
g1(α) is continuous and increasing and therefore, there exist a unique α such that
g1(α) = cδ. Thus,

‖ũn
α̂

− u‖ = O

(
δ√
α

)

= O

(
δ

2ν
2ν+1 δ

1
2ν+1

1√
α

)

= O

(
δ

2ν
2ν+1

(
δ√
α

) 1
2ν+1

(
1√
α

) 2ν
2ν+1

)

= O

(
δ

2ν
2ν+1

∥∥αn(L∗L + α I )−n(L∗L)νv
∥∥ 1

2ν+1

(
1

α

) ν
2ν+1

)

= O

(
δ

2ν
2ν+1

∥∥αn−ν(L∗L + α I )−n(L∗L)νv
∥∥ 1

2ν+1

)

= O
(
δ

2ν
2ν+1

)
.

In particular, if ν = n, then ‖ũn
α̂

− u‖ = O
(
δ

2n
2n+1

)
. �	

4 Application to the singularly perturbed 1D parabolic PDE

In this section, we apply the theory developed in previous section to singularly per-
turbed 1D parabolic reaction-diffusion problem:
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∂u

∂t
− ε

∂2u

∂x2
+ a(x, t)u = f (x, t), � := (0, 1) × (0, 1), (4.1)

u(x, 0) = 0, u(0, t) = u(1, t) = 0, t, x ∈ [0, 1] (4.2)

where 0 < ε << 1 and the reaction term satisfies 0 < β ≤ a(x, t) for all (x, t) ∈ �̄

and the data f are sufficiently smooth functions on �̄. This we represented as

Lu = f. (4.3)

Theorem 4.1 Let unα = ∑n
j=1 α j−1L∗(LL∗ + α I )−1 f and u be the iterative regu-

larized approximate solution and the solution of the singularly perturbed parabolic
PDE (1.3) respectively. Then uα converges to u as α → 0.

Proof Proof is analogous to the proof of the Theorem 2.2. �	
Theorem 4.2 Let u be the solution of the singularly perturbed parabolic PDE (1.3)
and unα = ∑n

j=1 α j−1L∗(LL∗ + α I )− j f and ũnα = ∑n
j=1 α j−1L∗(LL∗ + α I )− j f̃

be the regularized solution with respect to the actual data f and perturbed data f̃
respectively. Then the following hold good.

1. ‖ũnα − u‖ ≤ q(α) + c δ+ε√
α
, where q(α) = ‖αn(L∗L + α I )−nu‖.

2. (A priori Method) If the regularization parameter α that depends on both δ, ε

satisfying α(δ, ε) → 0 and δ+ε√
α(δ)

→ 0, then ‖ũnα − u‖ → 0 as δ, ε → 0.

Moreover, if u ∈ R((L∗L)ν), 0 < ν ≤ n, then

‖ũnα − u‖ ≤ αν + c
δ + ε√

α

and by choosing α ∼ (δ + ε)2/(2ν+1)

‖ũnα − u‖ = O((δ + ε)2ν/(2ν+1)).

Proof It is easy to see that,

∥∥ũnα − u
∥∥ ≤ ∥∥unα − u

∥∥ + ∥∥ũnα − unα
∥∥

=
∥∥∥∥∥∥

n∑

j=1

α j−1L∗(LL∗ + α I )− j Lu − u

∥∥∥∥∥∥

+
∥∥∥∥∥∥

n∑

j=1

α j−1L∗(LL∗ + α I )− j ( f − f̃ )

∥∥∥∥∥∥

≤ ∥∥αn(L∗L + α I )−nu
∥∥ +

∥∥∥∥∥∥

n∑

j=1

α j−1L∗(LL∗ + α I )− j‖‖ f − f̃

∥∥∥∥∥∥

≤ q(α) + c
δ√
α
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≤ q(α) + c
δ + ε√

α
, (4.4)

where q(α) = ‖αn(L∗L + α I )−nu‖, which proves the first assertion. It is known
from Theorem 4.1, q(α) tends to zero as α → 0. For a given δ > 0, ε > 0, choose
α = α(δ, ε) fulfilling α(δ, ε) → 0 and δ+ε√

α(δ)
→ 0. Thus, q(α) + c δ+ε√

α
→ 0 as

δ, ε → 0. The final result follows from the spectral theory and hence the proof of the
theorem. �	

In order to choose the regularization parameter for singularly perturbed parabolic
PDE in an a posteriori manner, we slightly modify the parameter choice rule (3.1) by
taking into account the singularly perturbed parameter. The parameter choice rule for
singularly perturbed parabolic PDE is considered as:

g(α, f̃ ) := 2α2n+1〈(LL∗ + α I )−(2n+1) f̃ , f̃ 〉 = γ 2(δ + ε)2 (4.5)

where 0 < γ 2(δ + ε)2 ≤ 2‖ f̃ ‖2. (4.6)

The following theorems emphasis that we can find out a unique α depends on the
singularly perturbed parameter ε and the noise level δ.

Theorem 4.3 Suppose that γ >
√
2 and f̃ �= 0. The function defined in (4.5) satisfies

the following properties.

1. Continuously differentiable, strictly increasing and g′(α, f̃ ) = 2(2n + 1)α2n‖L∗
(LL∗ + α I )−(n+1) f̃ ‖2.

2. If 0 < γ 2(δ+ε)2 ≤ 2‖ f̃ ‖2, then there exists a unique α satisfying g(α(δ, ε), f̃ ) =
γ 2(δ + ε)2.

Proof Proof is analogous to the proof of the Theorem 3.1. �	
Theorem 4.4 Let γ, γ1and γ2 be defined in Theorem 3.2. If α̂ is determined by (4.5),
then there exist a constant γ ∈ [γ1, γ2] such that g(α̂, f ) = γ 2(δ + ε)2.

Proof By the definition of g, it is easy to see that

g1/2(α, f ) = √
2α(2n+1)/2

∥∥∥(LL∗ + α I )−(2n+1)/2 f
∥∥∥

= √
2α(2n+1)/2

∥∥∥(LL∗ + α I )−(2n+1)/2 f̃

+ (LL∗ + α I )−(2n+1)/2( f − f̃ )
∥∥∥

�
√
2α(2n+1)/2

∥∥∥(LL∗ + α I )−(2n+1)/2 f̃
∥∥∥

±√
2α(2n+1)/2

∥∥∥(LL∗ + α I )−(2n+1)/2( f − f̃ )
∥∥∥ .

If ‖ f − f̃ ‖ ≤ δ, then (γ − √
2)2(δ + ε)2 ≤ g(α, f ) ≤ (γ + √

2)2(δ + ε)2. By
Theorem 4.3, there exist a constant γ ∈ [γ1, γ2] satisfying g(α̂, f ) = γ 2(δ + ε)2. �	
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Theorem 4.5 Let γ, γ1and γ2 be defined in Theorem 3.2. Then p(α) = q(α)2 +
γ 2 (δ+ε)2

α
attains minimum if and only if g(α, f ) = γ 2(δ + ε)2.

Proof Proof follows from the Theorem 4.4 and the properties of p′(α). �	
Now we show that α obtained through discrepancy principle (4.5) gives the mini-

mum error.

Theorem 4.6 Let γ, γ1, and γ2 be given in Theorem 3.4. The parameter α̂ is chosen
according to (4.5), then

‖ũn
α̂

− u‖ ≤ c0 inf
α>0

{
q(α) + c

δ + ε√
α

}
(4.7)

where c20 = 2max{(c/γ1)2, (γ2/c)2}.
Proof From (4.4) we have ‖ũn

α̂
− u‖ ≤ q(α̂) + c δ√

α̂
. Since α obtained through

discrepancy principle (4.5) gives the minimum error, by squaring both sides of the
above relation we have,

‖ũn
α̂

− u‖2 ≤ 2

(
q(α̂)2 + c2

(δ + ε)2

α̂

)

≤ 2max{(c/γ )2, 1}
(
q(α̂)2 + γ 2 (δ + ε)2

α̂

)

≤ 2max{(c/γ )2, 1} inf
α>0

{
q(α)2 + γ 2 (δ + ε)2

α

}

≤ 2max{(c/γ )2, 1}max{(γ /c)2, 1} inf
α>0

{
q(α)2 + c2

(δ + ε)2

α

}

≤ 2max{(c/γ1)2, (γ2/c)2} inf
α>0

{
q(α)2 + c2

(δ + ε)2

α

}
.

Hence, ‖ũn
α̂

− u‖ ≤ c0 infα>0
{
q(α) + c δ+ε√

α

}
with c20 = 2max{(c/γ1)2, (γ2/c)2}. �	

Theorem 4.7 Suppose that u ∈ R((L∗L)ν) with 0 < ν ≤ n. Then

1. There exists a unique α such that α(2n+1)/2‖(L∗L +α I )−n(L∗L)νw‖ = c(δ + ε).

2. ‖ũn
α̂

− u‖ = O
(
(δ + ε)

2ν
2ν+1

)
.

Proof Proof is analogous to the proof of the Theorem 3.5. �	
Theorem 4.8 Let L be a singular perturbed parabolic operator defined in (1.3) and
unα = ∑n

j=1 α j−1L∗(LL∗+α I )− j f be the iterative regularized approximate solution
of (1.3). Then, the following result holds for a large positive c,

|unα(x, t)| ≤ c

(
1 + e−

√
β
ε
x + e−

√
β
ε
(1−x)

)
.
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Table 1 Sup norm and L2-norm errors for a = 1 with out data error

ε Norm and α n = 1 n = 2 n = 3 n = 4

10−2 α 6.3687e−02 3.9146e−01 1.3397e−01 3.8762e−01

eα(Sup.) 2.6377e−03 2.7652e−03 2.7696e−03 2.7696e−03

eα (L2) 2.2426e−02 2.7777e−02 2.8357e−02 2.8357e−02

10−4 α 2.1946e−02 2.9220e−01 2.3131e−01 4.4231e−01

eα(Sup.) 1.1621e−02 2.0405e−03 2.3053e−03 2.3107e−03

eα (L2) 1.1624e−01 1.1781e−02 1.3187e−02 1.3228e−02

10−6 α 2.4072e−02 1.2275e−01 2.0569e−01 6, 1188e−01

eα(Sup.) 1.3471e−03 4.5171e−05 5.9304e−05 5.9564e−05

eα (L2) 1.8712e−03 3.1587e−04 3.4027e−04 3.4182e−04

10−8 α 4.1551e−03 2.8170e−02 4.8407e−01 9.0246e−01

eα(Sup.) 2.3935e−04 6.0213e−07 5.7176e−07 5.5312e−07

eα (L2) 3.2586e−03 7.5664e−06 3.2908e−06 3.1945e−06

10−10 α 4.1961e−03 4.5122e−02 4.8453e−01 9.0431e−01

eα(Sup.) 2.4224e−04 9.9874e−07 4.1729e−08 3.1908e−09

eα (L2) 3.2921e−03 1.3482e−05 5.6239e−07 4.2888e−08

Table 2 Sup norm and L2-norm errors for a = 1 + xe−t with out data error

ε Norm and α n = 1 n = 2 n = 3 n = 4

10−2 α 5.8124e−02 2.1729e−01 1.2316e−01 6.2239e−01

eα(Sup.) 2.6489e−03 2.7631e−03 2.7652e−03 2.7652e−03

eα (L2) 2.1351e−02 2.6081e−02 2.6316e−02 2.6318e−02

10−4 α 2.0678e−01 3.0206e−01 4.7687e−01 5.0320e−01

eα(Sup.) 1.0836e−02 1.9950e−03 2.2446e−03 2.2551e−03

eα (L2) 1.4130e−01 8.6931e−03 9.6688e−0 9.7316e−03

10−6 α 2.3583e−02 1.2670e−01 3.7330e−01 5.1670e−01

eα(Sup.) 1.3068e−03 4.3946e−05 5.7817e−05 5.8284e−05

eα (L2) 1.6913e−02 2.4512e−04 2.5349e−04 2.5570e−04

10−8 α 2.7615e−03 2.9651e−02 1.7935e−01 8.3919e−01

eα(Sup.) 1.5814e−04 4.1194e−07 5.7770e−07 5.8386e−07

eα (L2) 1.9943e−03 4.5738e−06 2.5336e−06 2.5625e−06

10−10 α 2.8688e−03 4.8183e−02 2.3833e−01 8.4479e−01

eα(Sup.) 1.6481e−04 7.2006e−07 1.4828e−08 4.7774e−09

eα (L2) 2.0728e−03 3.3845e−06 1.5944e−07 2.3121e−08
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Fig. 1 Actual solution for ε = 10−8

Fig. 2 Computed solution for ε = 10−8
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Fig. 3 Reg error for a = 1 and ε = 10−8

Proof Let unα = ∑n
j=1 α j−1L∗(LL∗ + α I )− j f , then we can rewrite it as unα =

(I − αn(L∗L + α I )−n)u. Let g2(x) = c(1 + e−
√

β
ε
x + e−

√
β
ε
(1−x)

), we see that

L(g2 ± uα) = Lg ± Lunα
= Lg2 ± L(I − αn(L∗L + α I )−n)u

≥ βc ± ( f − αn(LL∗ + α I )−n) f.

For a large positive c, we obtain that L(g2 ± uα) ≥ 0 on �. Using weak maximum
principle, we have g2 ± unα ≥ 0 on �. �	

Theorem 4.9 Let u be the solution of singular perturbed parabolic operator defined
in (1.3) and unα = ∑n

j=1 α j−1L∗(LL∗ +α I )− j f be the iterative regularized approx-
imate solution of (1.3). Then, it holds for a large positive c.

|unα(x, t) − u| ≤ cα

(
1 + e−

√
β
ε
x + e−

√
β
ε
(1−x)

)
.

123



www.manaraa.com

An iterative technique for perturbed parabolic PDE 213

Fig. 4 Reg error for a = 1 + xe−t and ε = 10−6

Proof From the proof of the Theorem 4.8, unα = (I − αn(L∗L + α I )−n)u. Using

g2(x) = cα(1 + e−
√

β
ε
x + e−

√
β
ε
(1−x)

), it is easy to see that

L(g2 ± (u − unα)) = Lg2 ± L(u − unα)

= −β(g2 − cα) + a(x, t)g2 ± αnL(L∗L + α)−nu

≥ −β(g2 − cα) + βg2 ± αn(LL∗ + α)−n f

= cαβ ± αn(LL∗ + α)−n f.

We have that L(g2 ± (u − unα)) ≥ 0 on �, for a large c > 0. From weak maximum
principle, g2 ± (u − unα) ≥ 0 on �. Hence, |u − unα| ≤ g2. �	

5 Numerical examples

This section deals with numerical implementation of the regularized equation to exam-
ine the theoretical results and its applicability. The numerical computations are done
in MATLAB. The regularization parameter α is chosen through both a priori and a
posteriori parameter choice rule (4.5). We consider two different cases for discussion,
one with no error in the data f and another with a perturbed data f̃ of f by introducing
the random error. The respective parameter choice rule applicable in these cases will

123



www.manaraa.com

214 M. P. Rajan, G. D. Reddy

Fig. 5 Act sol for a = 1 + xe−t and ε = 10−6

Fig. 6 Com sol for a = 1 + xe−t and ε = 10−6
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Table 3 Sup norm and L2-norm errors for a = 1 with data error δ = 0.1

ε Norm n = 1 n = 2 n = 3 n = 4

10−2 ẽα(Sup.) 1.0762e−02 2.6864e−03 2.7755e−03 2.7755e−03

ẽα (L2) 1.5062e−01 1.9864e−02 2.5725e−02 2.5725e−02

10−4 ẽα(Sup.) 1.1759e−02 2.1054e−03 2.3323e−03 2.3323e−03

ẽα (L2) 1.6286e−01 1.3015e−02 1.4022e−02 1.4022e−02

10−6 ẽα(Sup.) 1.4476e−02 1.9137e−03 7.7292e−04 6.3622e−04

ẽα (L2) 1.9600e−01 2.1573e−02 7.4643e−03 6.5290e−03

10−8 ẽα(Sup.) 1.4581e−02 1.8327e−03 8.8054e−04 7.5048e−04

ẽα (L2) 1.9851e−01 2.2762e−02 8.9514e−03 7.6545e−03

10−10 ẽα(Sup.) 1.4574e−02 1.7423e−03 8.4917e−04 7.8535e−04

ẽα (L2) 1.9607e−01 2.0815e−02 7.4701e−03 6.6531e−03

Table 4 Sup norm and L2-norm errors for a = 1 with data error δ = 0.01

ε Norm n = 1 n = 2 n = 3 n = 4

10−2 ẽα(Sup.) 2.7456e−03 2.7609e−03 2.7611e−03 2.7611e−03

ẽα (L2) 2.6245e−02 2.8219e−02 2.8253e−02 2.8255e−02

10−4 ẽα(Sup.) 1.0236e−02 2.0638e−03 2.2893e−03 2.2934e−03

ẽα (L2) 1.4184e−01 1.1729e−02 1.3063e−02 1.3104e−02

10−6 ẽα(Sup.) 2.8495e−03 1.4785e−04 8.5080e−05 7.3265e−05

ẽα (L2) 3.9082e−02 1.6487e−03 7.3249e−04 6.2709e−04

10−8 ẽα(Sup.) 3.1274e−03 1.6304e−04 8.4318e−05 7.7156e−05

ẽα (L2) 4.2373e−02 1.8053e−03 7.2772e−04 7.2619e−04

10−10 ẽα(Sup.) 3.1410e−03 1.6718e−04 7.2743e−05 6.8112e−05

ẽα (L2) 4.2359e−02 1.9607e−03 6.9669e−04 6.4786e−04

Table 5 Sup norm and L2-norm errors for a = 1 + xe−t with data error δ = 0.1

ε Norm n = 1 n = 2 n = 3 n = 4

10−2 ẽα(Sup.) 1.1059e−02 2.5699e−03 2.6622e−03 2.6622e−03

ẽα (L2) 1.4722e−01 1.9717e−02 2.3479e−02 2.3479e−02

10−4 ẽα(Sup.) 1.0397e−02 1.9212e−03 2.4031e−03 2.4031e−03

ẽα (L2) 1.3420e−01 1.1214e−02 1.1374e−02 1.1502e−02

10−6 ẽα(Sup.) 1.4579e−02 1.7309e−03 7.4623e−04 6.9256e−04

ẽα (L2) 1.8966e−01 1.9290e−02 6.7521e−03 6.2181e−03

10−8 ẽα(Sup.) 1.5510e−02 2.0304e−03 8.5458e−04 7.1499e−04

ẽα (L2) 1.9076e−01 2.0370e−02 7.9749e−03 7.2298e−03

10−10 ẽα(Sup.) 1.4927e−02 1.9658e−03 8.4008e−04 6.8129e−04

ẽα (L2) 1.8983e−01 1.9640e−02 7.7436e−03 7.2644e−03
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Table 6 Sup norm and L2-norm errors for a = 1 + xe−t with data error δ = 0.01

ε Norm n = 1 n = 2 n = 3 n = 4

10−2 ẽα(Sup.) 2.7312e−03 2.7662e−03 2.7670e−03 2.7670e−03

ẽα (L2) 2.2634e−02 2.6203e−02 2.6294e−02 2.6294e−02

10−4 ẽα(Sup.) 8.8436e−03 1.9864e−03 2.2970e−03 2.3106e−03

ẽα (L2) 1.1555e−01 8.8754e−03 9.8416e−03 9.8416e−03

10−6 ẽα(Sup.) 2.9981e−03 1.6705e−04 7.8404e−05 7.4537e−05

ẽα (L2) 3.7978e−02 1.5942e−03 7.7179e−04 7.7135e−04

10−8 ẽα(Sup.) 3.2688e−03 1.9387e−04 7.7142e−05 7.2682e−05

ẽα (L2) 4.1344e−02 1.8187e−03 7.4755e−04 7.3032e−04

10−10 ẽα(Sup.) 3.2779e−03 1.5607e−04 6.4180e−05 5.8807e−05

ẽα (L2) 4.1105e−02 1.6576e−03 5.8981e−04 5.9678e−04

be g(α) = γ ε2 and g(α) = γ 2(δ + ε)2, where g is defined as in (4.5). The nonlinear
equation involving g is solved by Newton method. We choose two different models
for study, one with a = 1 and another with a = 1+ xe−t . We divide this section in to
three subsections. In the first subsection, we present the numerical result for different
models with out data error in f and in the second subsection the corresponding result
with perturbed data f̃ . In final subsection, we compare the regularized scheme with
other exiting schemes, such as, back word and Crank-Nicolson schemes with Shishkin
mesh .

The 1D parabolic reaction-diffusion singularly perturbed PDE is defined by Lu =
f on �, that is

∂u

∂t
− ε

∂2u

∂x2
+ a(x, t)u = f (x, t) on �. (5.1)

The Crank–Nicolson scheme is used to discretize perturbed parabolic PDE and the
discrete version is the following

b1ui−1, j + b2ui−1, j+1 + b3ui, j + b4ui, j+1 + b5ui+1, j + b6ui+1, j+1

= 1

2
( f (i, j) + f (i, j + 1)) (5.2)

where

b1 = b2 = b2 = b5 = b6 = −ε

2h2
,

b3 = −1
k + ε

h2
+ 1

2ai, j and b4 = 1
k + ε

h2
+ 1

2ai, j+1.

The spacing x−direction and t−direction denoted by h and k respectively. The numer-
ical solution and data values are represented by ui, j and fi, j respectively. From the
above system of equations we get the matrix Ldis and hence the iterative Tikhonov
regularized solution will be
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Fig. 7 Com. sol for a = 1; δ = 1 %; ε = 10−8

Fig. 8 Com. sol for a = 1 + xe−t ; δ = 1 %; ε = 10−8
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Fig. 9 Reg.error for a = 1; δ = 1 %; ε = 10−8

unα,dis =
n∑

l=1

αl−1LT
dis(Ldis L

T
dis + α)−l fdis .

We represent the error ‖u − uα‖ as eα and ‖u − ũα‖ as ẽα respectively.

5.1 a = 1, a = 1 + xe−t and no error in the data f

In this subsection, we see numerical solutions with no error in the data f of the model
(1.1) with a = 1 and a = 1+ xet . The data f is taken such that exact solution of (1.1)
is

u = t

(
e−x/

√
ε − e−(1−x)/

√
ε

1 − e−1/
√

ε
− cos(πx)2

)
.

Tables 1 and 2 show the numerical results of the model (1.1) with a = 1 and
a = 1 + xe−t respectively on the grid size 32 × 32. We observe from these tables
that the numerical result confirms the theoretical convergence rate of O(ε2/3). Figures
1 and 2 represent actual and computational solutions respectively and corresponding
error is given by Fig. 3 for a = 1 with ε = 10−8. For a = 1 + xe−t with ε = 10−6,
actual and computed solutions are presented in Figures 5 and 6 respectively and the
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Fig. 10 Reg.error for a = 1 + xe−t ; δ = 1 %; ε = 10−8

corresponding error is given in Fig. 4. We can easily see from the error figure that
there is a boundary layer phenomena at edge x = 0 and x = 1. The parameter α is
evaluated using the a posteriori parameter choice rule.

5.2 a = 1, a = 1 + xe−t and the data with data error in f

In this subsection, we discuss the case with model having inputs of perturbed data. In
order to see how well regularized scheme works with data error, we introduced the
random error in the data f and tried to obtain a stable approximate solution for the
problem. We slightly perturbed the data f with 1 and 10 % random error for a = 1,
a = 1 + xe−t and applied the regularized scheme. The computational results are
summarized in Tables 3, 4, 5 and 6 for the model (1.1) with a = 1 and a = 1 + xe−t

when δ = 1 and 10 % respectively. The computational results assert the theoretical
convergence rate O((ε + δ)2/3). For δ = 1 %, Figs. 7 and 8 display the computational
solution of the model (1.1) with a = 1 and a = 1 + xe−t respectively and the
corresponding errors are given in Figs. 9 and 10.

5.3 Comparison with other schemes

In this subsection, our idea is to study how good the approximate solution obtained
through regularization technique compared with the standard schemes. We obtain the
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Table 7 Sup norm and L2-norm errors

ε N Norm BW.error (Shishkin) CN.error (Shishkin) Reg.error

a = 1 a = 1 + xe−t a = 1 a = 1 + xe−t a = 1 a = 1 + xe−t

10−2 25 Sup. 7.6481e−04 7.5931e−04 7.6150e−04 6.7356e−04 2.7696e−03 2.7652e−03

L2 7.2963e−03 6.9314e−03 7.1896e−03 5.7254e−03 2.8363e−02 2.6318e−02

26 Sup. 1.9565e−04 1.9398e−04 1.1595e−04 3.7369e−04 2.8197e−03 2.8176e−03

L2 3.5976e−03 3.4214e−03 3.5710e−03 6.3023e−03 5.7359e−02 5.3619e−02

27 Sup. 4.8984e−05 4.8584e−05 4.8922e−05 2.1697e−04 2.8390e−03 2.8379e−03

L2 1.7817e−03 1.6953e−03 1.7751e−03 7.2140e−03 1.1505e−02 1.0768e−01

10−4 25 Sup. 1.0919e−02 1.0903e−02 1.0831e−02 1.0790e−02 2.3110e−03 2.2555e−03

L2 4.8705e−02 4.6232e−02 4.7943e−02 4.4465e−02 1.3230e−02 9.7344e−03

26 Sup. 4.7284e−03 4.7244e−03 4.7164e−03 4.7054e−03 1.1068e−03 1.0896e−03

L2 3.6962e−02 3.5208e−02 3.6702e−02 3.5947e−02 1.2283e−02 1.0436e−02

27 Sup. 1.6754e−03 1.6738e−03 1.6731e−03 1.6672e−03 9.2583e−04 1.1352e−03

L2 2.4396e−02 2.3279e−02 2.4314e−02 2.6860e−02 1.2860e−02 1.2644e−02

10−6 25 Sup. 1.0919e−02 1.0917e−02 1.0832e−02 1.0828e−02 5.9579e−05 5.8307e−05

L2 4.8707e−02 4.6244e−02 4.7945e−02 4.5712e−02 3.4191e−04 2.5581e−04

26 Sup. 4.7285e−03 4.7281e−03 4.7165e−03 4.7154e−03 2.3678e−04 2.3420e−04

L2 3.6963e−02 3.5216e−02 3.6703e−02 3.7826e−02 1.9202e−03 1.4456e−03

27 Sup. 1.6754e−03 1.6753e−03 1.6732e−03 1.6726e−03 8.9896e−04 8.9399e−04

L2 2.4396e−02 2.3283e−02 2.4315e−02 2.9766e−02 1.0288e−02 7.7526e−03

10−8 25 Sup. 1.0919e−02 1.0919e−02 1.0832e−02 1.0831e−02 5.9707e−07 5.8433e−07

L2 4.8707e−02 4.6245e−02 4.7945e−02 4.5818e−02 3.4270e−06 2.5647e−06

26 Sup. 4.7285e−03 4.7284e−03 4.7165e−03 4.7164e−03 2.3887e−06 2.3628e−06

L2 3.6963e−02 3.5216e−02 3.6703e−02 3.7980e−02 1.9382e−05 1.4606e−05

27 Sup. 1.6754e−03 1.6754e−03 1.6732e−03 1.6731e−03 9.5534e−06 9.5019e−06

L2 2.4396e−02 2.3284e−02 2.4315e−02 2.9993e−02 1.0960e−04 8.2893e−05

10−10 25 Sup. 1.0919e−02 1.0919e−02 1.0832e−02 1.0832e−02 5.9708e−09 5.8435e−09

L2 4.8707e−02 4.6246e−02 4.7945e−02 4.5829e−02 3.4271e−08 2.5647e−08

26 Sup. 4.7285e−03 4.7285e−03 4.7165e−03 4.7165e−03 2.3890e−08 2.3631e−08

L2 3.6963e−02 3.5216e−02 3.6703e−02 3.7995e−02 1.9384e−07 1.4608e−07

27 Sup. 1.6754e−03 1.6754e−03 1.6732e−03 1.6731e−03 9.5569e−08 9.5048e−08

L2 2.4396e−02 2.3284e−02 2.4315e−02 3.0015e−02 1.0964e−06 8.2924e−07

numerical solutions of the model (1.1) with a = 1 and a = 1 + xe−t through Back
ward and Crank–Nicolson schemes on Shishkin mesh for different values of ε and
mesh sizes. The numerical results of three schemes are provided in Table 7 for a = 1
and a = 1 + xe−t . For a = 1 and ε = 10−8, the numerical solution of Back ward
scheme and Crank–Nicolson schemes are showed in the Figs. 11 and 12 on the grid
size 32× 32 and their corresponding errors in the solutions are presented in Figs. 13,
14. Figures 15, 16 provide numerical solutions of Backward Crank–Nicolson schemes
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Fig. 11 BW.comp sol for a = 1, ε = 10−8

Fig. 12 CN.comp sol for a = 1, ε = 10−8
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Fig. 13 BW.error for a = 1, ε = 10−8

Fig. 14 CN.error for a = 1, ε = 10−8
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Fig. 15 BW.comp sol for a = 1 + xe−t , ε = 10−6

Fig. 16 CN.comp sol for a = 1 + xe−t , ε = 10−6
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Fig. 17 BW.error for a = 1 + xe−t , ε = 10−6

Fig. 18 CN.error for a = 1 + xe−t , ε = 10−6
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respectivelywhen a = 1+xe−t and ε = 10−6. The corresponding errors given in Figs.
17 and 18. The regularization parameter α obtained by an a priori parameter choice
rule. The computational result indicates that iterative Tikhonov regularization can be
considered as an alternative method for finding the solution for singularly perturbed
parabolic problems.
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